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following relations for those cases: 

QI/2 = 1/d = (Na .2 + 12c'2) 1/2. 

The term 12c'2 is neglected for the cubic system. N is 
h 2 + k 2 + l 2 for cubic, h 2 + k 2 for tetragonal  and h 2 + 
hk  + k 2 for tr igonal and hexagonal  systems, respec- 
tively. Since indices h, k and l are integers, different 
combinat ions  of  h, k and  l give the same values for N 
and  give rise to superposit ion of  Debye-Scherrer  
lines (e.g. 333 and 511 reflections for the cubic 
lattice). For  evaluat ion of  the Pat terson funct ion we 
should exclude Debye,--Scherrer lines that  are super- 
posit ions of  lines caused by such metrical  charac- 
teristics of  the reciprocal lattice. 

Determina t ion  of  Laue classes f rom diffraction 
data  of  polycrystal l ine materials  is thus possible and 
it is now feasible to study crystal structures of  those 

materials  with the same process applied to single 
crystals. 

The authors  would like to express their gratitude 
to Dr  Charles  T. Prewitt, Director  of  the Geophy-  
sical Laboratory ,  Carnegie Inst i tut ion of  Wash-  
ington, for a critical reading of  the manuscript .  
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Abstract 
For the transition of the structure factors of benzil (B) to 
benzil (A), Colella [Acta Cryst. (1994), A50, 55--57] employs 
the relation 

Fa(h, k, I) = F B ( - h - k ,  k, - l ) ,  (1) 

i.e., in matrix notation, 

(h, k, /)a = HA 0) 
=lib -- 1 0 

0 --1 
= HsA 

= ( - h - k ,  k, - l ) .  (2) 

This relation is wrong since det (A) = 1. It is not a mapping 
onto an enantiomorph; for the change of handedness, det (A) 
must be -1.  Moreover, matrix A is an element of the related 
point group 321. Thus, the result is symmetrically equivalent 
to the starting set of structure factors. As a consequence, all 
arguments presented on the basis of (1) are invalid. 

To avoid confusion, it is convenient to give some further 
explanations with respect to the problem. 
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Enantiomorphic objects are defined by their symmetry; their 
symmetry operations are only proper rotations R, i.e. det (R) = 
1. The transition from one enantiomorph to the other is 
described by a pair of matrices (A, S). The application of 
(A, S) acts on the coordinates by 

X = (A, S ) - I x  = A - I ( x - s )  (3) 

and on the symmetry operations by 

(R, T) = (A, S)(R, T)(A, S) - l  
= {ARA-1, AT + [(E- A)RA-  1 ]S}. (4) 

For the mapping (A, S), det (A) must be equal to - 1 (see above). 
The simplest matrix of this type is the matrix for a center of 
inversion. It can be separated from any improper rotation. 
With this center of symmetry, the transformation relations can 
be simplified significantly: 

xj = S - X j ;  Rk = Rk; Tk = ( E - R k ) S - T k .  (5) 

Here, j counts the atoms in the unit cell and k the symmetry 
operations of the space group. Inserting these expressions into 
the structure-factor equation, we get the structure factor F of 
the enantiomorph: 

F(H) = F( - H) exp (27riBS) (6a) 
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or 

IF(H) [ = I F ( - H )  I and go(H) = - go(H) + 27rHS, (6b) 

i.e., if the center of symmetry does not coincide with the origin 
of the structure, the structure factors are affected by a phase 
shift of exp(27riHS). Since the basis is fixed, H = (h, k,/) does 
not change. The structure factors, however, differ with respect 
to the enantiomorphic pairs. 

The space groups of enantiomorphic structures are 
merohedral space groups that give rise to ambiguities with 
respect to handedness (Hahn & Klapper, 1992). To resolve 
these ambiguities, a suitable property, derivable from X-ray 
diffraction data, is needed (Burzlaff & Htimmer, 1988). This 
property can be expressed by a set of structure-factor moduli 
affected by anomalous dispersion or by a set of suitable triplet 
phases, as is shown below. 

Before discussion of the triplets, it is convenient to 
discuss the implications connected with space groups 
of enantiomorphic structures and their normalizers. For 
enantiomorphic structures, two cases may be distinguished: 

(i) The space group of an enantiomorphic structure is mapped 
onto itself, i.e. it does not 'feel' the enantiomorphic property. 
All space groups of this type have a normalizer (Euclidean or 
affine) that has a center of symmetry. Thus, it is convenient to 
use a center of symmetry of the normalizer for the mapping of 
the enantiomorphs onto each other (see above). 

(ii) The space group of an enantiomorphic structure is 
mapped onto another so-called enantiomorphic space group. 
In this case, the normalizers are noncentrosymmetric groups. 
Inspection of the eleven pairs of enantiomorphic space groups, 
however, shows that they can be mapped onto each other by a 
center of symmetry placed in the origin, if the standard setting 
of International Tables for Crystallography (1992) is used. 

Restrictions and special relations for structure-factor phases 
of enantiomorphic structures due to symmetry are treated 
explicitly by Koch (1986) (see also Koch & Fischer, 1992). 

After this discussion, it can easily be seen that suitable 
triplet phases resolve the enantiomorphic ambiguity. By (6b), 
the following relations hold for any triplet H, K, - K - H  with 
its triplet phase #(H, K) = go(H) + go(K) + go( -K-H) :  

#(H, K) = go(H) + go(K) + qo ( -K-H)  

= - go(H) - go(K) - go(- K -  H) 
+ 27r[H + K - (K + H)]S 

= - #(n ,  K); (7) 

thus, the experimental observation of ~(H, K) is equivalent to a 
determination of absolute structure. As was shown by Hiimmer, 
Weckert & Bondza (1989) for benzil, suitable triplets can be 
found. 
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Abstract 

Two figures of merit for the selection of correct phase sets 
from a number of possible or trial phase sets are defined: 
(1) based on the criterion that significantly negative points 
should be sparse in electron-density maps; and (2) based 
on comparison of electron-density histograms with the 
theoretically expected histogram [Lunin (1993). Acta Cryst. 
D49, 90-99]. It is shown that both figures of merit are 
useful for judging random phase sets and useless for phase 
sets that originate from direct-methods procedures such as 
symbolic addition or tangent refinement. 

Introduction 

The first equation employed for direct phase determina- 
tion, the inequality of Harker & Kasper (1948), is based on 
the non-negativity criterion: the electron-density function 
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must be zero or positive everywhere. The most important 
equations used in direct-methods procedures, however, 
are the triple-phase relationship and the tangent formula. 
They were derived from statistical considerations (e.g. 
Hauptman & Karle, 1953) and related to the Sayre (1952) 
equation, and are based on atomicity: the electron-density 
function consists of peaks (at discrete points) in otherwise 
almost empty space. We investigated the use of these two 
basic principles, non-negativity and atomicity, as figures of 
merit for trial phase sets, especially when a large number of 
phase sets has been generated. 

The non-negativity criterion 

The non-negativity criterion is not as powerful as atomicity 
(for a discussion regarding this topic, see Navaza & 
Navaza, 1992) but as it is not explicitly used in most 
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